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A Nonequilibrium Entropy for Dynamical Systems 
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It is proposed to define entropy for nonequilibrium ensembles using a method of 
coarse graining which partitions phase space into sets which typically have zero 
measure. These are chosen by considering the totality of future possibilities for 
observation on the system. It is shown that this entropy is necessarily a 
nondecreasing function of the time t. There is no contradiction with the 
reversibility of the laws of motion because this method of coarse graining is 
asymmetric under time reversal. Under suitable conditions (which are stated 
explicitly) this entropy approaches the equilibrium entropy as t ~ + oo and the 
fine-grained entropy as t---~- oo. In particular, the conditions can always be 
satisfied if the system is a K-system, as in the Sinai billiard models. Some 
theorems are given which give information about whether it is possible to 
generate the partition used here for coarse graining from time translates of a 
finite partition, and at the same time elucidate the connection between our 
concept of entropy and the entropy invariant of Kolmogorov and Sinai. 

KEY WORDS: Entropy; dynamical system; K-system; H-theorem; irrevers- 
ibility. 

1. A NONEQUIL IBRIUM ENTROPY FOR DYNAMICAL SYSTEMS 

The  q u e s t i o n  of h o w to def ine  e n t r o p y  for n o n e q u i l i b r i u m  sys tems is of 
l ong  s t a n d i n g  [see the reviews b y  W e h r l  (l) a n d  Penrose(2)]. I t  is gene ra l ly  

t hough t  ( though  n o t  u n i v e r s a l l y - - s e e  Pr igogine,  O) Mis ra  (4)) tha t  the  r ight  
w a y  to de f ine  a n o n e q u i l i b r i u m  e n t r o p y  shou ld  invo lve  some  k i n d  of  coarse  
g r a in ing  (see, for  example ,  To lman(5) ) .  However ,  if the coarse  g r a in ing  is 

d o n e  in  a n  a rb i t r a ry  way,  t h e n  the  coa r se -g ra ined  e n t r o p y  is n o t  necessar i ly  
a n o n d e c r e a s i n g  f u n c t i o n  of t ime. I n  this p a p e r  we p ropose  a n e w  type  of 
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coarse graining for dynamical systems which leads naturally to a definition 
of nonequilibrium entropy which does have the property of nondecrease 
with time, and under suitable conditions has the equally desirable property 
of tending to the equilibrium entropy as time proceeds. 

The entropy defined here is quite distinct from the Kolmogorov-Sinai 
entropy invariant used in ergodic theory. Our entropy is a time-dependent 
property of nonequilibrium measures, whereas that of Kolmogorov and 
Sinai is independent of time and depends onty on the measure-theoretic 
structure of the dynamical system. There is, however, a connection between 
the two entropy concepts: the Kolmogorov-Sinai invariant is related to the 
rate at which the entropy we define here can increase with time. 

2. THE OBSERVATIONAL MODEL 

Our method of coarse graining depends on a specific model of the 
observational process, which we now describe. 

We describe the microscopic states of the system by means of "phase 
points" ~0 and denote the phase space consisting of all possible phase-space 
points by fL We shall say that two phase-space points ~o~ and ~% are 
observationally equivalent if two systems, one having the phase point r l and 
one the phase point r will, if subjected to precisely the same experimental 
procedures, give precisely the same observable behavior throughout the 
future. We make the assumption (which could be challenged, as in the 
theory of "fuzzy observables, ''(6-s)) that if co~ is observationally equivalent 
to ~2 and w z is observationally equivalent to w 3, then ~l is observationally 
equivalent to w3; in this case observational equivalence is an equivalence 
relation in the mathematical sense. We can then split phase space into a 
family or partition II  of nonoverlapping sets, such that two phase points 
belong to the same set in II if and only if they are observationally 
equivalent. 

Since its definition is not symmetric between past and future, the 
partition II itself is not symmetric between past and future. We can 
characterize this asymmetry using the family of time evolution transforma- 
tions q~t defined for all real t b y  the condition that a system whose phase 
point is r at time 0 will have phase point ~t ~ at time t. For (isolated) 
dynamical systems these transformations are invertible and have the group 
property q~,q~t -- q~,+t for all real s, t. 

Suppose now that o~ l and c02 are any two phase points belonging to the 
same set a in the partition 1-[. Since 0 h and ~02 cannot be distinguished by 
any observational procedure starting at time t = 0, then afortiori  they 
cannot be distinguished by any observational procedure starting at a later 
time t (with t > 0); hertce the points ~ and 4~,~2 into which the time 
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evolution carries them are observationally equivalent and therefore belong 
to the same set, call it fl, in the partition II. So if a is any one of the sets 
belonging to l-I, then the set 4~ta, consisting of all the images under q~t of 
points in a, is a subset of some set/3 in 17[. 

Since q~t is invertible, every phase point in ~2 belongs to one of the sets 
eota (a E H); these sets therefore constitute a partition of ~2, which we may 
denote by ~tII; in other words, the partition 4~,II is a refinement of the 
partition II. This relation between II and q~tII is the asymmetric property 
we require, since it holds only for nonnegative t. 

Since the definition of entropy involves integration, we want to replace 
the above condition by one involving measurable sets. We may safely 
assume the sets constituting the partition II to be measurable and consider 
the family ~ consisting of all measurable sets that are unions of sets from 
the family rl. If we also include the empty set 0 in ~, then ~ is closed 
under the operations of forming complements and countable unions, and is 
called the o-algebra generated by the  partition II. As we have just seen, 
every set in II is the image under ~t of some union of sets in H; every set in 

is therefore the image of some union of sets in II. Moreover, since q't is 
measure-preserving and invertible, this union of sets in II is measurable 
and therefore belongs to ~. Thus every set in ~ is the image under q~t of 
some set in ~; that is to say, the algebra ~t~, consisting of the images under 
q~t of all the sets belonging to ~, includes (among others) all the sets of 
itself: 

q~,~ D ~ (t > 0) (2.1) 

The a-algebra ~ is our mathematical representation of the observational 
possibilities available at any given instant, and the condition (2.1) repre- 
sents the loss of observational or information-gathering possibilities as time 
proceeds. It will be the source of our results about the increase of entropy 
with time. 

A particular case of (2.1), which we shall use later, arises if we further 
specialize the model of observation by making the following two natural 
assumptions: 

i. Observations are possible only at an equally spaced set of instants, 
which we denote by t . . . . .  - 2 ,  - l, 0, l, 2, 3, � 9  

ii. The observation made at any instant has only a finite set of 
possible outcomes. 

Let us define P to be the partition of phase space into sets of points 
that are indistinguishable by an observation made at time 0. Two phase 
points ~o I and ~% are then observationally equivalent if and only if the time 
translates ~twl and 4,t~02 lie, for every nonnegative integer t, in the same set 
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from the partition P. In other words, % and 0.) 2 must lie in the same set 
from the partition c)_tP. Hence the sets forming the partition II are 
intersections of sets from the partitions P, ~)_ l P, ~_ 2 P . . . . .  The a-algebra 

therefore includes all the sets belonging to P,  ~ _  1P, e#_2P . . . .  , together 
with sets formed by taking countable intersections of these sets. Indeed, it 
can be defined as the smallest o-algebra which contains all the partitions 
P, ~ -  1 P, qS_ 2 P . . . . .  written 

~o 

g = V * - , P  (2.2) 
t = O  

3. DEFINIT ION OF ENTROPY 

Let / ,  be some finite invariant measure (not necessarily normalized) on 
the phase space ~, and let v be any measure, absolutely continuous with 
respect to /,, which is normalized but not necessarily invariant. We may 
think of v as defined by a normalized density on the phase space fa, given 
by the Radon-Nikodym derivative 

19 = dv / dlx 

We shall assume it to have a finite fine-grained entropy: 

h ( v )  = - k f *l(p) dl~> - ~ (3.1) 
, 1  

where 

x l o g x  ( x > 0 )  
r/(x) = 0 (x = 0) (3.2) 

and k is Boltzmann's constant, a positive number. 
For the problem of predicting the observable future behavior of the 

system, the fine-grained density p is too detailed; it contains information 
which does not affect future observational possibilities. This unnecessary 
information can be removed, without affecting the probabilities of observ- 
able future events, if we replace p by a different probability density O~ 
obtained by averaging P over each equivalence class of observable states. 
The mathematical formulation of this "averaging" is provided by the 
conditional expectation of O with respect to the algebra C,3 

Oa = E(OI~)  (3.3) 

3 This is the conditional expectation for the measure/t//x(f~). 
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We therefore adopt, as our definition of coarse-grained entropy, the for- 
mula 

= - kf.(o )dr (3 P4) 

Put differently, the entropy should depend on v and # regarded as 
measures on the a-algebra ~ of observational equivalence rather than the 
full a-algebra. So regarded, the derivative of v with respect to/~ is just (3.3). 
Note also that h(v, ft.) is well defined for any sub-a-algebra ~. 

, TIME EVOLUTION 

The time evolut ion of the measure v consists of the family of measures 
{ Pt ) defined (formally) by 

v,(Ot~0 ) = v(~o) (4.1) 

This implies, for any set A in phase space, that 

vt(A ) = v(~_tA) (4.2) 

and hence, since the measure # used in defining the entropy is invariant, 
that 

h(u,, if.) = h(v, eO_tff.) (4.3) 

The nondecrease property of the entropy now follows from the following 
result. 

T h e o r e m  1. h0,,s3) is a nonincreasing function of 63. That is, if 
and C are any two a-algebras of measurable sets on f~, satisfying 63 c E, 
then 

h(v,~) ;~ h(r,E) (4.4) 

Proos The basis of our proof is Jensen's inequality, 0) which implies, 
since the function 7/is convex, that 

~l(eoe 1~)) < E(~(0e) I~) a.e. (4.5) 

Since ~ c G, we have, by a well-known property of conditional expecta- 
tions (Ref. 9, Theorem 10.2) 

E(E(pIE) I~) = E ( P [ ~ )  a.e. (4.6) 

In our notation, defined in (3.3), this becomes 

E(Oc 1~) = P~ a.e. (4.7) 

The definitior/of conditional expectation implies that 

fuE(~ (pc)[ 6~)d/~= f J I  (0r (4.8) 
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Combining (4.5) and (4.7), integrating both sides of the resulting inequality 
over f~, and using (4.8), we obtain 

fa~l(p~)dl~ < farl(pe)dlx (4.9) 

By the definition (3.4) of h, this last result is equivalent to the required 
inequality (4.4). �9 

Corollary 1.1. The entropy h(p,~) is bounded below by the fine- 
grained entropy h(p) and above by the "equilibrium" entropy k log/~(f~). 

Proof. Theorem 1 implies 

h(~, ( o , a } )  >/h(~,~) >/h( , ,  

where 0y is the algebra of all measurable sets on a. Since 

h(~, {0, f~}) = k log g(f~) and h(p, ~') = h(p) 

the result follows. �9 

Corollary 1.2 (An "H-Theorem") .  The entropy h(p,, @) is a nonde- 
creasing function of t. 

Proof. If t > s, then (2.1) implies Ot_,~ D ~, so that 

It follows, by (4.3) and Theorem 1, that 

h(~,t,~ ) = h(o,(p_t(~ ) 

( t>s )  �9 

5. CONTINUITY PROPERTIES OF THE ENTROPY 

Theorem 1 shows that the entropy is bounded below by its fine- 
grained value h(p) defined in (3.1), and above by 

hQ,, ( 0 , ~ ) )  = klog/x(f~) (5.1) 

The nondecrease property therefore implies that h(~t,~ ) must approach 
limits as t ~ + ~ and t ~ -  ~ ,  We should like to be able to show that 
these limits are equal to the corresponding upper and lower bounds. 

This question can be investigated using the following continuity prop- 
erty. 

Theorem 2. If {~t} is an increasing or decreasing family of a- 
algebras, with t either continuous or discrete, and if ~ is its limit in the 
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sense that 63t1'~oo or ~ t $ ~ ,  then 

lim h(p, ~t) = h(e, ~oo) 
t - - ~ o o  

Proof. 
lent to 

where 

with 

331 

(5.2) 

By the definition (3.4) the result we wish to prove is equiva- 

lim (" f d/l = f~foo d/~ (5.3) t-~oo j ~  

andfo o is defined analogously. 

f = ~/(p,) (5.4) 

p, = E(Ol ~,,) (5.5) 

The martingale convergence theorem (Refs. 10, 11; see also Ref. 9, pp. 
116 and 121) tells us that 

lim f(oa) = f~(oa) a.e. (5.6) 
t - + o o  

and so if the density p(w) is bounded, the result (5.3) follows from 
Lebesgue's dominated convergence theorem. In general, however, p(oa) need 
not be bounded, nor need the family {f,) be bounded by an integrable 
function, and so a more complicated proof is necessary. Our proof depends 
on the following result. 

Lemma 2.1. The family of funct ionsf  is uniformly integrable; that is 
to say, the funciion k defined by 

k(x) = sup ( . I f [  dt~ (5.7) 
J A  

where 

satisfies 

~X=A(x,t) = (,o: If,('o)l > x )  (5.8) 

lim X(x) = 0 ( 5 . 9 )  
X --.x O0 ~ / 

Proof of Lemma 2.1. Since we are interested only in large x, we 
need only consider values larger than 1/e. Then, since the function ,/ is 
bounded below by - l / e ,  only positive values of f, contribute to the 
integral in (5.7), so that 

f lf, (x > l /e)  (5.10) 
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Jensen's inequality, with (5.4) and (5.5), gives 

<fe(n(0) 
=fn(0ldr (5.11) 

since A belongs to at .  
The set A may be divided into two parts: Al, in which ~(p)/> x '/2 and 

A2, in which 7/(p) < x ~/z. The contribution of A] to the last integral in (5.11) 
is bounded above by 

X,(x) = fn(o)~ x '/2~(0) dr (5.12) 

and because of (3.1) we have 

lira Xl(x) = 0 (5.13) 

Throughout A 2 we have 7/(p) < X 1/2 a n d f  ) x, so that 7(P) <~ ft/xl/2, and 
the contribution of A 2 to the integral is bounded above by 

- 1/2f~ x - l / 2 f  f d r <  x f tdr  (x > I /e )  (5.14) 
dA2 

Using the estimates (5.12) and (5.14) in (5.11) and rearranging, we obtain 

(1 - x-'/2)fAftdr< X,(x) (x > I /e )  (5.15) 

Combining this with (5.10) and the definition (5.7) of ~(x), we find that 

0 < X(x) < X,(x)/(1 - x -V2) (x > 1) (5.16) 

Using (5.13), we complete the proof of (5.9) and hence of the lemma. [] 
Returning now to the proof of Theorem 2, let us define 

ft(x)(t~ = ( f(~)0 ifif If,(,o)llf'(~ <>~ xX (5.17) 

and f i  x) similarly. Equation (5.7) of Lemma 2.1 ther/implies, since 

that 

f Zdr X f.f,")dr• X(x) (5.18) 
The integrability of the function ft is guaranteed by the formula (5.18) itself, 
or alternatively by the fact that 

k f ftdr = -h(~,~,) < -h(~) 
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To prove Theorem 2, we now take the limits t o oo and then x o ~ on 
both sides of (5.18). For the limit t-~ ~ we use the martingale theorem 
(5.6) which implies 

tlim f(~)(r = f~)(~0) a.e. (5.19) 

provided x is such that 

/~(~: too(c0) = x} = 0 (5.20) 

The set of values of x for which (5.20) is false will be denoted by F; it is a 
countable set of real numbers. Applying Lebesgue's dominated conver- 
gence theorem to (5.19), we obtain 

lira f ft (x)= faf(~X)d~ (5.21) 

and so the t o ~ limit of (5.18) can be written 

lim ~infCSuP~f~ ftd/L % l  t'(')d/~_ + ?~(x) (5.22) 
t---> oo j a oo 

Finally, we take the limit x o oo, avoiding values of x in the countable set 
F. Since X(x )o  0 by Eq. (5.9) of Lemma 2.1, the result is simply Eq. (5.3). 

From this theorem we can obtain sufficient conditions for h(ut, ~) to 
approach, in the limits t o  + oo and t o  - o o ,  the upper and lower bounds 
mentioned in Corollary 1.1. 

Corollary 2.2. (i) If ~ ' l ' l  as s--> ~ ,  where 1 denotes the algebra of 
all measurable sets, then h05, d~)---> h(p) as t o -oo .  

(ii) If q,,d~$6 as s o - o0, where 0 is the algebra of all sets of measure 0 
or/x(fl), then h(pt, ~)--> klog/z(f~) as t--> + m [klog/t(f l)  is the thermody- 
namic equilibrium entropy]. 

(iii) If the dynamical system (q,,/~, ~2) is a K-system, then there is a 
sub-a-algebra ~ such that h(pt,d~ ) is nondecreasing , approaches the fine- 
grained entropy h(p) as t - > - o o ,  and approaches the thermodynamic 
entropy k log/~(~) as t--> + oo. Moreover, every sub2o-algebra ~ of the 
form (2.2) for some finite partition P will satisfy ~,d~$0 in this case. 

Proof. For (i) take ~ = q>~t~ and ~ = 1 in Theorem 2. For (ii) 
take ~ ,  = <k,d~ and ~ = 0. For (iii) use the definition of a K-system, 
which is simply that there should exist a subalgebra d~ with the nonincrease 
property (2.1) and the two properties required in parts (i) and (ii). The 
"moreover" states the fact that for K-systems finite partitions have trivial 
tails (Ref. 11, Chap. 7). �9 

Sinai (12) has argued that the hard-sphere gas is a K-system, using an 
increasing subalgebra A defined in terms of the sequence of collisions that 
takes place between the various spheres. If this is so, then Eq. (3.4) defines 
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a nondecreasing entropy for such a system in terms of the probability 
measure for sequences of future collisions. 

Two further corollaries, though not in the mainstream of this work, are 
included for completeness. 

Corollary 2.3. The following alternative definition of h(p,d~) is 
equivalent to our definition (3.4): 

h(p,~) = - kinf{A,)e~-~ Ix(Ai)Tl[P(Ai)/l~(Ai) ] (5.23) 
i 

where the "inf" is taken over all finite partitions of ~2 whose elements are in 

Proof. Since every sub-o-algebra of a Lebesgue space is countably 
generated (mod 0), there is an increasing sequence of finite partitions 
p( l ) ,p(2)  . . . .  such that P( ')I"~ as n ~ .  For each of these finite 
partitions we have from the definition (3.4) 4 

h(p, s 2 ( " ) ) = - k  ~, ~(A)71[p(A)/~(A)] (5.24) 
A E p(n) 

and, by Theorem 2, 

lim hQ,, 62(,))= h(v, ~) (5.25) 

so that the right-hand side of (5.23) cannot exceed h(u, ~). But, on the other 
hand, Theorem 1 shows that for any finite partition P with elements in 
we have 

h(t , ,P) >/h(t,,fg) 

so that the right-hand side of (5.23) cannot be less than hO', ~). Thus the 
two sides of (5.23) are equal. �9 

Corollary 2.4. Under the condition (ii) of Corollary 2.2, namely, 
A 

r as s ~ - 

the measures whose densities are (dpJdl~)~ converge as t ~ m  to the 
equilibrium measure with constant density 0~ = 1//z(f~) not only in en- 
tropy, as implied by Corollary 2.2, but  also in L l: 

Proof. We want to show that 

( dvt ~) p~(o~) d~(~o) l ims (,,,)- =0 

Since @t preserves measure, this is equivalent to 

4We write 62 for the sub-o-algebra associated with the finite partition P. 
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which by (4.1) is the same as 

lim fIE[ dp iq~_,~)(~o ) _ 0~(~) d~(o~) = 0 

This in turn can be written 

lim ( s  

where 

= ~/(&) and fo~ = ~(Ooo) 

with 

and 

with 

~(x )  = Ix - p~[ (x  E ~) 

o, = E ( p I ~ , )  

335 

~ t  = q ' - , ~  

Since ~/is a convex function, bounded below like ~/, the proof of Theorem 2 
applies here too. �9 

An alternative proof is to use the L 1 martingale convergence theorem. 

6. THE BAKER'S T R A N S F O R M A T I O N  

To illustrate some of the results in this paper, we consider two 
examples. The first is the baker's transformation, r in which the phase 
space is the unit square ((p,q): O < p < l ,  O < q < l )  and the time 
evolution is defined by 

(27,�89 if ? <~ 
~ l ( P ' q ) =  ( 2 p - - l , � 8 9 1 8 9  if p~>�89 

(6.1) 

together with the obvious rule 

(~t = (~ l )  t ( t  ~ Z) 

A suitable algebra ~ can be constructed by assuming that the only 
observation possible is to observe whether or not p <�89 and using the 
recipe (2.2). The partition P divides phase space into two rectangles: in one 
0 < p < �89 and in the other �89 < p < 1. The formula (2.2) then tells us that 
corresponds to the partition of phase space into lines p = const. 

For any absolutely continuous measure p, the coarse-grained probabil- 
ity density p~ corresponding to the algebra ~ is given, in accordance with 
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(3.3), by 

where 

Goldstein and Penrose 

p~(p,q) = o(p) (6.2) 

o(?) = fo'O(p,q)dq 
with P defined by dp = P(p, q)dp dq. Its time evolution law is given by (14) 

ot+1(p) = �89 [o,(�89 + ot(�89 + �89 (6.3) 
The entropy associated with the measure p is, by (3.4), 

hQ,, ~) = - k folO(p ) log o( p) de (6.4) 

Since the function 7/(x) = x logx is convex, it follows by (6.3) and Jensen's 
inequality that 

(Pt+ l'~) = -- k fol~(ot+ l(ff)) h .p 

:> -kfo'[  ( �89189 �89 

= h( , , ,  ~) (6.5) 

which confirms the "H-theorem" of Corollary 1.2. 
According to Corollary 1.1, h(u, ~) has the upper and lower bounds 

h(p) < hQ,,~) <~ k log l  = 0 (6.6) 

where 

1 1 

h ( p ) =  - k  fo fo p(p,q)logp(p,q)dpdq 

is the fine-grained entropy. Moreover, since the baker's transformation is a 
K-system, ~ Corollary 2.2 tells us that h(~'t, if,) approaches its upper 
bound 0 as t o  oe and its (negative) lower bound h(v) as t o  - o e .  

7.. MARKOV CHAINS 

The second of our two examples is the Markov chain. Let F be a space 
on which is defined a o-algebra ~ of sets, and denote the transition kernel 
by 

K(7,F ) ( ~ r ,  F~~ 
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This means that if the probability distribution over F at time t is given by a 
measure t, vs the probability distribution at time t + 1 is given by the 
measure vrs+] = er,tK defined by 

](F) = fraer,t(y)K(7, F) (7.1) PF,t + 

Let/z r be an equilibrium measure on F, that is, one satisfying I~rK =/~r, 
and suppose that PF,t is absolutely continuous with respect to/~r. Then one 
would expect to be able to show, using Jensen's inequality, that the entropy 
defined by 

hr(vr) = - k frdl~r~ ( dvr ) (7.2) 

satisfies an H-theorem: 

hr(ur,t+~) >1 hr(ur,t) (7.3) 

The original H-theorem of Pauli (x6) is a special case of this formula and 
there have been various generalizations of Pauli's result since--for example, 
that of Lindblad. (17) 

To relate these properties of Markov chains to the results of the 
present paper we consider an abstract dynamical system associated with the 
Markov chain. Its phase space ~2 is the set of all doubly infinite sequences 

60 = ( . . . .  r (7.4) 

with 

oJ, ~ F for all integers n 

The time evolution (q't)tez on ~ is defined by 

(~,o,), = ~ .+ ,  (7.5) 

We may define a a-algebra over f~ by 

~ n (7.6) 
n ~  - - O 0  

where oyn is a sub-a-algebra over f~ consisting of sets of the form 

(to: ca n ~ F )  with F E oy (7.7) 

For our sub-a-algebra A we choose, by analogy with (2.2), 

= V ~n (7.8) 
n ~ 0  

Its time translates are given by 

~ - t ~  = V oy. (7.9) 
n ~ t  

so that our basic "loss of information" condition (2.1) is satisfied. 
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Associated with the equilibrium measure/~r over the o-algebra ~- in F 
there is a stationary measure/~ over the o-algebra Vn~176 6~n in s defined 
by 

/,{.0: % E F } = / ~ r ( F  ) ( n ~ Z ;  F E f f )  
/*{.0: *0n~F.  and *0n+l~Fn+l} 

(7.1o) 
= s K(*0 n, Fn + 1) ( F  n, F n +, E if) 

etc. 

Moreover, with any family of nonequilibrium measures {Vr, t}t> 0 in F 
satisfying (7.1), there is associated a nonstationary measure v over the 
subalgebra ~ in I', defined analogously: 

v(*0: % ~ r }  =Vr,n(F ) (n >>-0, reff) 

v(*0: % ~ F n and *0,+ 1 E Fn+,} =frdvr,  n(*0n) K(*0n,F,+,) (7.11) 

etc. 

If Vr, 0 is absolutely continuous with respect to /*r, then v is absolutely 
continuous with respect to / t~ ,  the restriction of # to 6g, and the Radon-  
Nikodym derivatives are essentially the same, in the sense that dv/dl~ ~ is 
measurable in ~ 0 and is isomorphic in if0 to the measure dvr,o/dlzr in ft. We 
may write this relation as 

dvr,o 

and it has the consequence that 

h(v, g) = hr(vr,0) (7.12) 

In a similar way, we can show that 

h ( v, ~ _ t ~) = hr(Pr,t) (7.13) 

and so the Markov cha in / / - theorem (7.3) is seen to be a corollary of our 
more general H-theorem given in Corollary 1.2. 

If in addition the Markov chain has trivial tail, e.g., if it has a finite 
state space and is irreducible and aperiodic, then the algebra ~ satisfies the 
"trivial tail" condition (ii) of Corollary 2.2:~,d~$6 as s ~ - oo. In that case 
Corollaries 2.2 and 2.4 tell us that, as t -+ oo, dvr, t/dtt r converges in entropy 
and also in L l to a unique equilibrium phase-space density, which is a 
constant. 

8. RELATION TO THE KOLMOGOROV-SlNAI  ENTROPY 

In the two examples just considered, it was easy to find a o-algebra 
satisfying our fundamental condition ~t~ D A in a sufficiently nontrivial 
way to ensure that h(pt, g) is not constant. For more general dynamical 



Nonequllibrlum Entropy for Dynamical Systems 339 

systems it is not so obvious that this can be done, let alone whether d~ can 
be constructed from a finite partition using the recipe (2.3). The following 
theorems give some information about this question, and at the same time 
elucidate the connection between our concept of entropy and the entropy 
invariant of Kotmogorov and Sinai. 

First we need some notation. Let ~ = 01, and let H = H(q~) denote the 
Kolmogorov-Sinai (KS) entropy invariant. For any finite partition P let ~e 
denote the o-algebra of the form (2.2) generated by P. 

For ~ c q,t~ the entropy increase in state u (for th given ~) is defined by 

= h ( . , ,  - = - 

and the entropy increase for q~ given ~ is defined by 

A#(~) = sup A~'Q,, d~) 
P 

where the "sup" is over all p << t~ with h(p) > - or Suppose q, is ergodic 
with H < ~ .  Then we define the entropy increase for r by 

A0 = inf A*(~) 

where the "inf" is over all o-algebras ~ = d~ e "of full entropy," i.e., for 
which H(P, q,)--the KS entropy of q~ given P--equals  H (Ref. 11, Chap. 5). 
Finally, the asymptotic rate of entropy increase for r is given by 

A~s = lira (1/t)A+, (t E Z) 
t---> aa 

Theorem 3. (a) For d~ C fl~, A*(d~) > 0r H(d~llq,-ld~) > 0J  In par- 
ticular, (b) A4(d~p) > O ~ H ( P ,  ep) > 0; (c) A*(~) = 0 for all d~ C fl,@c=>H 
= 0; and (d) A*(d~e)> 0 for all nontrivial finite partitions Pc~fl~ is a K 
automorphism. Moreover, if t, is ergodic and H(q~)< ~ ,  then (e) A ~ 
= kf(H(ep)), where f i s  defined by 

+ t )  if t o g n < x < l o g ( n + l )  ( n = I , 2 , 3 , . . . )  

and (f) A~s = kH(ep). 

Proof. Parts (e) and (f) will be proven in a separate publication. <18~ 
Part (a) follows from the observation that for d~ c ~d~ 

Since H ( P ,  q 0 =  H(d~e[[g~-l~e), (b) follows from (a). Since H(~)  
= sup~ c o~ H(d~llq~-~d~), r (c) also follows from (a). Part (d) follows from 
(b) using the fact that K-automorphisms ~ have completely positive en- 
tropy; this means just that H(P, ~) > 0 for all nontrivial P. �9 

s H(~llq , - ] ~ )  is the conditional entropy of ~ given d?-]~.(24) 
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Normally, in statistical mechanics we would expect to find H >> 1, in 
which case the theorem says that if ~ is suitably chosen, then A~(p, ~) can 
be as large as H but very little larger. 

Another question which can be partly answered using the Kol- 
mogorov-Sinai entropy invariant is whether a a-algebra ~ of the form ~e 
for some finite partition P has either of the properties considered in 
Corollary 2.2: 

A 

i. ~s~l"l as s---> oo 
ii. %~$0 as s---> - oo 

Theorem 4. If q,~ is ergodic, then (i) H < oo if and only if there 
exists a finite partition P for which 

A 

q,s6Eel"l as s---> oo (s E ?7) 

(ii) H > 0 if and only if there exists a nontrivial finite partition P for 
which 

'~s~e $6 as s - ~  - oo ( s  e z )  

Proof. (i) By Krieger's theorem (Ref. 11, Sec. 9.7; Ref. 19) the 
condition H < oo implies that the dynamical system has a finite generator, 
which can be used as P. And if a finite P exists, then the definition of KS 
entropy implies 

H < -  ~ /~(A)log/~(A)< 
A ~ P  

(ii) By Sinai's weak isomorphism theorem (Ref. 20; Ref. 11, Chap. 8; 
Ref. 9, p. 92) every ergodic automorphism with positive H has a Bernoulli 
factor of full KS entropy. Since every Bernoulli system is a K-system (Ref. 
15, p. 32; Ref. 11, See. 7.15), any finite partition contained in this factor 
will have trivial tail and can therefore be used as P. On the other hand, if 
H = 0, then for all nontrivial P the algebra q,s~e is independent of s and 
therefore cannot tend to 6. �9 

For any classical system Kushnirenko's theorem (Refs. 21; 15, p. 46) 
tells us that H < oo, and so if the system is ergodic, a finite P satisfying 
condition (i) can be found; but to show that H > 0 is more difficult. 

9. D I S C U S S I O N  

The main result of this paper is a method of defining a time-dependent 
entropy for a nonequilibrium measure (i.e., a nonequilibrium ensemble) in 
a general dynamical system. This definition has the main properties one 
would want of nonequilibrium entropy. It does not decrease with time 
(proved in Corollary 2.2); under suitable conditions [specified in part (ii) of 
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Corollary 2.2] it tends to the thermodynamic equilibrium entropy as time 
proceeds; and the entropy of a composite system consisting of two indepen- 
dent parts is easily shown (although we have not given the details in this 
paper) to be the sum of their individual entropies. 

Our definition of entropy employs a sub-a-algebra d~ of measurable 
sets satisfying the condition (2.1), ~td~ D ~, t > 0. According to the interpre- 
tation of the algebra ~ proposed in Section 2, its elements correspond to 
the various possible propositions about the future observable behavior of 
the system. The condition ,~t~ D ~ represents the fact that as time proceeds 
the set of observational opportunities that are still in the future decreases, 
and our entropy nondecrease law (Corollary 1.2) corresponds to the way 
this loss of observational opportunities progressively reduces the amount of 
detailed information that can still be obtained about any specific ensemble 
by means of observations made in the future. 

Two further conditions on ~ are also considered in the paper. One, 
condition (i) of Corollary 2.2, has the physical interpretation that a se- 
quence of observations stretching infinitely far both into past and future 
will determine the microscopic state as accurately as we please; it has the 
consequence (Corollary 2.2) that as t - ~ - o o  our entropy tends to the 
fine-grained entropy. The other condition, (ii) of Corollary 2.2, has the 
physical interpretation that a sequence of observations starting infinitely far 
in the future will give no significant information about the microscopic 
state; this condition has the consequence that as t-~ oo our entropy 
approaches the equilibrium entropy. In a K-system, both conditions are 
satisfied (if ~ is chosen properly), and many of the mechanical systems 
whose ergodic properties have been studied in detail, such as the various 
types of "billiards" studied by Sinai, Bunimovich, (22) and others, are K- 
systems. If condition (i) is violated, but (ii) holds, then the system has a 
factor which is a K-system, constructed by treating the elements of the 
measurable partition associated with V _ ~  ~t ~ (the "physical'; algebra, of 
events observable in the past, present, or future) as the points in a new 
phase space, and so the main results are still essentially the same. On the 
other hand, Theorem 4 implies that if ~l is ergodic, then the only way that 
condition (ii) can fail for all d~ c e~l~ is by the vanishing of the Kol- 
mogorov-Sinai entropy invariant. 

The Kolmogorov-Sinai  entropy is also closely related to the rate at 
which our entropy can increase; a more detailed treatment of this question, 
including the proof of Theorem 3, parts (e) and (f), will be given in a 
separate paper. 

We are interested particularly in a-algebras d~ of the form ~e for some 
finite P, which may be interpreted in terms of observational equivalence. 
Theorem 4 says that a-algebras of this form which satisfy (i) or (ii)just 
mentioned exist in any (discrete-time) ergodic dynamical system whose 
Kolmogorov-Sinai entropy invariant is finite and positive. There is no need 
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to assume, as is done, for example, by Penrose (Ref. 14, Sec. 5), that the 
observational states form a Markov chain, although the result given in 
Section 6 shows that our results reduce to the usual ones in the special case 
where the states do form a Markov chain. 

There is an apparent contradiction--the "paradox of irreversibility"-- 
between the time-reversal asymmetry of entropy increase and the time- 
reversal symmetry of Newtonian dynamical systems. Of course, for our 
entropy the contradiction disappears when we realize that the algebra 
used in the definition of entropy is not symmetric under time reversal. The 
suggestion that the paradox of irreversibility can be avoided by using a 
nonsymmetric definition of entropy was made by Prigogine, George, 
Henin, and Rosenfeld, (23) but they followed it up in a different way; they 
eschew coarse graining and instead seek to express the entropy in terms of 
the expectation of a suitable dynamical variable. An interesting recent 
application of this idea is the work of Misra, (4) who constructs a dynamical 
variable which can be interpreted as the time and is nondecreasing for that 
reason. 
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